Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution.
نویسندگان
چکیده
We present 3D linear reconstructions of time-domain (TD) diffuse optical imaging differential data. We first compute the sensitivity matrix at different delay gates within the diffusion approximation for a homogeneous semi-infinite medium. The matrix is then inverted using spatially varying regularization. The performances of the method and the influence of a number of parameters are evaluated with simulated data and compared to continuous-wave (CW) imaging. In addition to the expected depth resolution provided by TD, we show improved lateral resolution and localization. The method is then applied to reconstructing phantom data consisting of an absorbing inclusion located at different depths within a scattering medium.
منابع مشابه
Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography
In diffuse optical tomography (DOT), researchers often face challenges to accurately recover the depth and size of the reconstructed objects. Recent development of the Depth Compensation Algorithm (DCA) solves the depth localization problem, but the reconstructed images commonly exhibit over-smoothed boundaries, leading to fuzzy images with low spatial resolution. While conventional DOT solves ...
متن کاملSimulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function.
Diffuse optical imaging can measure brain activity noninvasively in humans through the scalp and skull by measuring the light intensity modulation arising from localized-activity-induced absorption changes within the cortex. Spatial resolution and localization accuracy are currently limited by measurement geometry to approximately 3 cm in the plane parallel to the scalp. Depth resolution is a m...
متن کاملReconstruction of Axial Tomographic High Resolution Data from Confocal Fluorescence Microscopy: A Method for Improving 3D FISH Images
Fluorescent confocal laser scanning microscopy allows an improved imaging of microscopic objects in three dimensions. However, the resolution along the axial direction is three times worse than the resolution in lateral directions. A method to overcome this axial limitation is tilting the object under the microscope, in a way that the direction of the optical axis points into different directio...
متن کاملMultilayer three-dimensional super resolution imaging of thick biological samples.
Recent advances in optical microscopy have enabled biological imaging beyond the diffraction limit at nanometer resolution. A general feature of most of the techniques based on photoactivated localization microscopy (PALM) or stochastic optical reconstruction microscopy (STORM) has been the use of thin biological samples in combination with total internal reflection, thus limiting the imaging d...
متن کاملAn Improved Time-Reversal-Based Target Localization for Through-Wall Microwave Imaging
Recently, time reversal (TR) method, due to its high functionality in heterogeneous media has been widely employed in microwave imaging (MI) applications. One of the applications turning into a great interest is through-wall microwave imaging (TWMI). In this paper, TR method is applied to detect and localize a target obscured by a brick wall using a numerically generated data. Regarding this, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 15 25 شماره
صفحات -
تاریخ انتشار 2007